Sedimentation rates in the Corumbataí River basin, Brazil, derived from ²¹⁰Pb measurements

DANIEL MARCOS BONOTTO, KELLY YAEKO MIYASHIRO DE ALMEIDA & SAMMY SAMPAIO SIEBER

Instituto de Geociências e Ciências Exatas, UNESP-Universidade Estadual Paulista Júlio de Mesquita Filho, Av. 24-A, no. 1515, CP 178, CEP 13506-900, Rio Claro, São Paulo, Brasil <u>dbonotto@rc.unesp.br</u>

Abstract Activity profiles of excess ²¹⁰Pb measured in four sediment cores from the Corumbataí River basin, São Paulo State, Brazil, provided an opportunity to evaluate sedimentation rates that are helpful for defining appropriate management strategies for the hydrological resources in the basin. This is because Rio Claro city and other municipalities make extensive use of surface waters for drinking water supply. The radiochemical analysis of the sediment cores yielded apparent sediment mass accumulation rates of between 406 and 1014 mg cm⁻² year⁻¹ for secondary drainage lines, whereas an intermediate value of 546 mg cm⁻² year⁻¹ was found in the Corumbataí River, the main drainage system of the studied area. These values provided estimates of average linear sedimentation rates of between 3.1 and 16.2 mm year⁻¹ that are compatible with field evidence, with the highest value corresponding with an area characterized by accumulation of sediment.

Key words Corumbataí River basin, Brazil; erosion; excess ²¹⁰Pb; physical weathering; radiochemical analysis; sediment; sedimentation rate

INTRODUCTION

Pb-210 is an intermediary member of the natural mass number (4n+2) ²³⁸U decay series that terminates with stable ²⁰⁶Pb, according to the sequence: ²³⁸U (4.49 Ga, α) \rightarrow ²³⁴Th (24.1 d, β^{-}) \rightarrow ²³⁴Pa (1.18 min, β^{-}) \rightarrow ²³⁴U (0.248 Ma, α) \rightarrow ²³⁰Th (75.2 ka, α) \rightarrow ²²⁶Ra (1622 a, α) \rightarrow ²²²Rn (3.83 d, α) \rightarrow ²¹⁸Po (3.05 min, α) \rightarrow ²¹⁴Pb (26.8 min, β^{-}) \rightarrow ²¹⁴Bi (19.7 min, β^{-}) \rightarrow ²¹⁴Po (0.16 ms, α) \rightarrow ²¹⁰Pb (22.26 a, β^{-}) \rightarrow ²¹⁰Bi (5 d, β^{-}) \rightarrow ²¹⁰Po (138 d, α) \rightarrow ²⁰⁶Pb.

Rn-222 emanating from land surfaces is responsible for ²¹⁰Pb present in the atmosphere, which is removed by precipitation. The atmospheric ²¹⁰Pb returning to the Earth's surface as fallout is commonly referred to as unsupported (excess) ²¹⁰Pb, whereas the ²¹⁰Pb resulting from the decay of ²³⁸U within rocks, soils, minerals and sediments has been termed supported (produced *in situ*) ²¹⁰Pb (Baskaran & Naidu, 1995). Numerous studies have utilized ²¹⁰Pb data as a chronometer for sediment accum-

Numerous studies have utilized ²¹⁰Pb data as a chronometer for sediment accumulation and mixing in lakes, estuarine, marsh, and coastal areas (see Appleby & Oldfield, 1992, for a comprehensive review), since they provide a reliable dating method over the last 100–150 years. In general, there are difficulties on obtaining ²¹⁰Pb concentration data that are above the detection limit in river sediments, a situation commonly encountered in Brazil, where ²¹⁰Pb-derived chronologies have been mainly developed for lakes and coastal areas (Godoy *et al.*, 1998). Additionally, the radio

Airport

Forest

52° W

BRAZDE

LEGEND

Drainage

S Lake

22°27'30"S

20° S

M..00,0E..

47°

56° W

22° 40'00"S

Rio Clar

Sampling point

🔷 Urban area

Fig. 1 Sketch map of the study area and location of the sampling sites.

8 Km

SCALE

Highway

--- Road

Piracicaba River

4

active disequilibrium in the U decay series caused by ²²²Rn loss from sediments has to be considered, since it will cause a depletion of supported ²¹⁰Pb, leading to non-equilibrium conditions between ²²⁶Ra and ²¹⁰Pb (Ravichandran *et al.*, 1995). All these aspects were properly addressed in the present study undertaken in the Corumbataí River basin, an important sedimentary basin in São Paulo State, Brazil, occupied by municipalities that extensively utilize the waters of the Corumbataí River and its tributaries for drinking water supplies.

THE STUDY AREA

The Corumbataí River basin extends over an area of about 1581 km² in the middleeastern part of São Paulo State (Fig. 1). It occurs as an eroded belt in a geomorphological province that delimits the northeastern edge of the basaltic flows in the Paraná sedimentary basin and the crystalline plateau. Several stratigraphic units of the Paraná basin (Palaeozoic–Cenozoic) outcrop in it, and the main rock types are sandstones, conglomerates, diamictites, tillites, siltstones, mudstones, shales, lime-stones, basalts, diabases and related basic intrusives, and different types of Cenozoic sediments. About 65% of the Corumbataí River basin area is covered by yellow-red podzols and latosols (Köffler, 1993).

The Corumbataí River flows to the confluence with the Piracicaba River, where monthly measurements of the flow rate during the last 26 years, at Santa Terezinha (Piracicaba city) indicate that 37.4% of the observed values are between 10 and 20 m³ s⁻¹ (DAEE, 2002). Rio Claro city is the most important municipality in the basin, with about 170 000 inhabitants. The climate of the region is tropical, being characterized by wet summers (October–March) and dry winters (April–September) (Bonotto & Mancini, 1992). The area often has 55–65 days of rain per year, with more than 80% of the precipitation falling between October and March. The mean annual rainfall is ~1600 mm, with the flow rate in the Corumbataí River being directly linked to the rainfall over its catchment .

EXPERIMENTAL METHODS AND RESULTS

The sediment cores were collected in December 2001 and March 2002 from widely spaced locations in the Corumbataí River basin (Fig. 1) viz.: downstream from Rio Claro city, at the confluence of the Corumbataí River with the Piracicaba River (Santa Terezinha district, Piracicaba city) (low reach); from the Claro Stream, a tributary of the Corumbataí River; from Ibitinga Creek, a secondary tributary of the Claro Stream; from a small lake situated in the Navarro de Andrade forest, which receives water from Ibitinga Creek and discharges into Santo Antonio Creek, a tributary of the Claro Stream. The Navarro de Andrade forest is an environmentally protected area, dominated by eucalyptus trees that were extensively used for fencing rails in the past.

One core was collected from each sampling site using a Wildco Model 77263 hand core sediment sampler that contains a transparent acrylic 51 cm long (5 cm internal diameter) liner tube. No compaction of sediment and minimal perturbation of the more muddy superficial core top were noticed in the core tubes during coring. The cores were extruded in the laboratory with a polyethylene embolus, and cut into 2–6 cm sections with a porcelain spatula. The resulting sediment samples were dried, disaggregated with a porcelain mortar, homogenized, weighed, and separated into aliquots for radiochemical analysis. Aliquots for grain size analysis were pulverized using an agate pestle and mortar, sieved and classified according to Wentworth (1932). The sediment was relatively homogeneous, with dominance of fine (0.125–0.25 mm) to very fine (0.062–0.125 mm) sand throughout the profile.

The heavy metals, Cu, Zn and Pb, were analysed in one core by spectrophotometry after digestion of 2 g of powdered aliquot in a mixture of $HCl + HNO_3 + HClO_4$ contained in a Teflon beaker. Standard analytical techniques were used for treating the resulting solution, in order to provide the concentration data, with the different coloured complexes produced being read by a Hach DR/2000 spectrophotometer at the appropriate wavelengths (Hach, 1992). Organic matter content was also evaluated in the same core by spectrophotometry (Hach, 1992).

The ²¹⁰Pb in sediments was determined by its granddaughter ²¹⁰Po. Homogeneous portions of dried samples from each core were used, with a ~0.5 g aliquot being taken into solution in a HCl + HNO₃ + HF mixture inserted in a Parr type digestion bomb (24 h at 110°C). The solution was brought to dryness, and the dry residue dissolved with 8M HCl. A known amount (8 dpm) of ²⁰⁹Po spike was added to assess ²¹⁰Po recovery. 5 ml of 20% hydroxylamine hydrochloride and 2 ml of 25% sodium citrate solution were added to the sample in a 50-ml Teflon beaker, and the pH was adjusted to 2 with NH₄OH (Flynn, 1968). Polonium was plated onto a Cu disc (1-inch diameter) suspended in the solution, heated to 85–90°C and stirred for 75–90 min. The disc was counted by α-spectroscopy with a 450 mm² area, 300 µm depletion depth, 26 keV resolution Si(Au) surface barrier detector coupled to a EG&G Ortec multichannel buffer. The MAESTRO software provided 1024 channels to plot the α-spectrum containing the ²⁰⁹Po and ²¹⁰Po peaks, with the ²¹⁰Po activity in the sample being evaluated by isotope dilution. The total ²¹⁰Pb activity, ²¹⁰Pb_T, was calculated from the ²¹⁰Po activity by considering the time Δt elapsed since the finishing of the plating procedure and the completion of α-counting, according to the equation:

$$^{210}Pb_T = ^{210}Po (e^{\lambda \Delta t}) \tag{1}$$

where λ is the ²¹⁰Po decay constant (0.005 day⁻¹).

The ²³⁸U content of cores collected from Navarro de Andrade Lake and the Claro Stream was determined by α -spectrometry. An aliquot of about 0.5 g was dissolved in a mixture of HCl + HNO₃ + HF and placed in a Parr digestion bomb with a known amount (3.39 dpm) of ²³²U-²²⁸Th spike. The dry residue was dissolved in 8M HCl, the U-isotopes were co-precipitated with Fe(OH)₃, the Fe³⁺ extracted with isopropyl ether, and the U separated from other interfering ions by anion exchange. The sorbed U was eluted with 0.1M HCl and electrodeposited on stainless-steel planchets that were placed in a counting chamber under 0.1 Torr vacuum for assay by α -spectrometry using a Si(Au) detector. ²³⁸U activity was calculated by isotope dilution using the ²³²U spike.

The ²³⁸U content of cores collected from the Corumbataí River and Ibitinga creek (aliquots ranging from 54 to 125 g) was measured by γ -ray spectrometry using a 2" × 2" NaI(Tl) scintillation detector and a 2048-channel multichannel analyser controlled by MAESTRO software. ¹³⁷Cs and ⁶⁰Co radioactive sources plus a pitchblende standard (1% uranium) were used to calibrate the system using the equation:

$$E = 2.15 \times 10^{-5} + 0.00169Ch$$

(2)

where E = energy in MeV and Ch = channel.

The γ -spectrometer was calibrated for ²¹⁴Bi (equivalent uranium, eU) readings using pitchblende standards from the New Brunswick Laboratory, US Department of Energy, Argonne, Illinois, USA, after waiting for ²²²Rn to reach secular radioactive equilibrium with ²²⁶Ra (at least 25 days). The calibration curve takes the form:

 $\log C_U = 1.057 \times \log I_U + 2.578$ (3) where C_U is the eU concentration, in ppm or $\mu g g^{-1}$ and $I_U =$ the effective intensity in

where C_U is the eU concentration, in ppm or $\mu g g$ and I_U = the effective intensity in cpm g⁻¹.

All radiochemical data are given in Table 1. Table 2 reports the results obtained for Pb, Cu, Zn, and organic matter analyses. The data for the more superficial and deeper layers of the Corumbataí River core were not used for sedimentation rate estimation, since a number of researchers (see Santschi *et al.*, 2001, and Baskaran &

Depth range (cm)	Total dry weight (g)	Cumulated dry weight per area (g cm ⁻²)	²³⁸ U content (µg g ⁻¹)	238 U activity, $(^{238}U_s)$ $(dpm g^{-1})$	²¹⁰ Po activity, (dpm g ⁻¹)	$\Delta t^{\rm a}$ (day)	Total ²¹⁰ Pb activity $(^{210}Pb_T)$ $(dpm g^{-1})$	In situ 210Pb activityb (210Pbs) (dpm g-1)	Excess ²¹⁰ Pb activity ^c (²¹⁰ Pb _{xs}) (dpm g ⁻¹)	$ \frac{\ln}{(^{210}Pb_{xs})} $ (dpm g ⁻¹)	Dep. Time ^d (year)	Dep. year
Corumbataí River												
0-3.4	79.08	4.03	2.29	1.69	0.56	2.1	0.56	0.27	0.29	-1.24	7	1995
3.4-6.8	72.55	7.72	0.72	0.53	0.88	2.1	0.89	0.08	0.81	-0.21	14	1988
6.8-10.2	65.52	11.05	3.09	2.29	1.04	2.1	1.05	0.37	0.68	-0.38	20	1982
10.2-13.6	86.45	15.45	0.02	0.01	0.50	1.7	0.50	0.002	0.50	-0.69	28	1974
13.6-17.0	84.99	19.78	1.10	0.81	0.52	1.7	0.52	0.13	0.39	-0.94	36	1966
17.0-20.4	68.53	23.27	2.28	1.61	0.60	1.7	0.60	0.27	0.33	-1.11	43	1959
20.4-23.8	66.87	26.68	2.29	1.69	0.80	1.7	0.81	0.27	0.54	-0.62	49	1953
Navarro de Andrade Lake												
4.5-9.0	41.63	2.12	9.16	6.78	3.56	10	3.74	1.08	2.66	0.98	3	1998
9.0-13.5	47.40	4.54	5.19	3.84	2.84	10	2.99	0.61	2.38	0.87	6	1995
13.5-18.0	45.44	6.85	4.58	3.39	1.92	10	2.02	0.54	1.48	0.39	9	1992
18.0-22.5	53.14	9.55	4.27	3.16	1.96	10	2.06	0.51	1.55	0.44	13	1988
22.5-27.0	45.79	11.88	4.18	3.09	1.86	10	1.96	0.49	1.47	0.38	16	1985
27.0-31.5	48.40	14.34	7.52	5.56	1.94	10	2.04	0.89	1.15	0.14	19	1982
31.5-36.0	52.86	17.03	8.64	6.39	2.18	10	2.29	1.03	1.26	0.23	23	1978
36.0-40.5	37.08	18.91	9.16	6.78	2.34	10	2.46	1.08	1.38	0.32	25	1976
Ibitinga Cree	k											
4.2-8.4	124.64	6.35	0.13	0.10	0.34	10	0.36	0.02	0.34	-1.08	6	1995
8.4-12.6	104.05	11.67	0.17	0.12	0.52	10	0.55	0.02	0.53	-0.64	12	1989
12.6-16.8	85.90	16.04	0.24	0.18	0.34	3	0.35	0.03	0.32	-1.14	16	1985
16.8-21.0	101.34	21.20	0.20	0.15	0.36	10	0.38	0.02	0.36	-1.02	21	1980
21.0-25.2	97.92	26.19	0.35	0.26	0.24	3	0.25	0.04	0.21	-1.56	26	1975
25.2-29.4	102.36	31.40	0.60	0.45	0.32	10	0.34	0.07	0.27	-1.31	32	1969
29.4-33.6	111.04	37.05	0.24	0.18	0.18	10	0.19	0.03	0.16	-1.83	37	1964
33.6-37.8	110.82	42.69	0.42	0.31	0.18	10	0.19	0.05	0.14	-1.97	43	1958
Claro Stream												
1.0-2.0	32.88	1.67	0.93	0.69	1.14	10	1.20	0.11	1.09	0.09	4	1997
2.0-3.0	34.39	3.42	4.58	3.39	1.10	10	1.16	0.54	0.62	-0.48	8	1993
3.0-4.0	35.61	5.23	0.51	0.38	0.52	10	0.54	0.06	0.48	-0.73	13	1988
4.0-5.0	23.27	6.41	0.76	0.56	0.64	10	0.67	0.09	0.58	-0.55	16	1985
5.0-6.0	30.05	7.94	0.68	0.50	0.46	10	0.48	0.08	0.40	-0.91	20	1981
6.0-7.0	26.86	9.31	2.70	2.00	0.76	10	0.80	0.32	0.48	-0.73	23	1978
7.0-8.0	30.72	10.87	1.19	0.88	0.64	10	0.67	0.14	0.53	-0.64	27	1974
8.0-9.0	21.15	11.95	1.01	0.75	0.44	10	0.46	0.12	0.34	-1.07	29	1972

Table 1 Radiochemical data for the sediments cores sampled from the Corumbataí River basin, São Paulo State, Brazil. analytical uncertainties of $\pm 10\%$ corresponding to 1σ (sd).

^a Time range between ²¹⁰Po plating and ending of alpha counting; ^{b 210}Pb_s = 0.16 (²³⁸U)_s; ^{c 210}Pb_{xs} = ²¹⁰Pb_T - ²¹⁰Pb_s;

^d Deposition time = cumulated dry weight/area ÷ sediment mass flux.

Naidu, 1995, among others) have questioned the validity of the assumption of steady-state accumulation, because mechanical mixing and diffusion of ²¹⁰Pb can occur in the first and last few cm of the sediment core and bioturbation can also affect the uppermost layer of the sediment, so that ²¹⁰Po may not have grown completely into equilibrium with ²¹⁰Pb.

Depth range (cm)	Organic matter (%)	Cu (µg g ⁻¹)	$Zn (\mu g g^{-1})$	Pb (µg g ⁻¹)
0-3.4	2.08	496	40	45.2
3.4-6.8	2.28	560	35	45.6
6.8-10.2	2.66	688	40	40.4
10.2-13.6	1.84	480	80	39.2
13.6-17.0	2.28	540	< 0.1	50.4
17.0-20.4	3.17	360	160	45.2
20.4-23.8	4.71	162	35	56.4

Table 2 Chemical analyses of the sediment core from the Corumbataí River.

The total ²¹⁰Pb activity in Table 1 is generally lower than the ²³⁸U activity (²³⁸U_s) that supplies the parent-supported (*in situ* produced) ²¹⁰Pb. This implies a radioactive non-equilibrium among ²¹⁰Pb and its ancestors in the ²³⁸U decay series, that is caused by ²²²Rn escaping from sediments to the surrounding fluid phase, such as water and air, i.e. only a fraction of Rn atoms formed in the solid phase will contribute to the generation of ²¹⁰Pb. The ²²²Rn-loss may be computed from the emanation coefficient or emanating efficiency (*E*) expressed by Wanty *et al.* (1992) as:

$$E = (^{222}\text{Rn})_{fluid} / (^{222}\text{Rn})_{fluid} + (^{222}\text{Rn})_{solid}$$

$$\tag{4}$$

An average value of E = 0.84 was obtained by Bonotto & Caprioglio (2002) on laboratory time-scale experiments conducted with sediments from the Botucatu and Pirambóia formations, whose grain size composition is very similar to that of the sediment cores analysed here. Therefore, it is possible to assume that only 16% of the ²²²Rn generated by ²²⁶Ra decay contributes to the production of ²¹⁰Pb, i.e. the supported ²¹⁰Pb, ²¹⁰Pb_s, may be calculated as:

$${}^{210}Pb_s = 0.16 \ ({}^{238}\text{U})_s \tag{5}$$

The excess ²¹⁰Pb activity, ²¹⁰ Pb_{xs} , is calculated by:

$${}^{210}Pb_{xs} = {}^{210}Pb_T - {}^{210}Pb_s \tag{6}$$

DISCUSSION AND CONCLUSIONS

The sedimentation rates estimated in this study were obtained using the CRS (constant rate of supply of unsupported/excess ²¹⁰Pb) model of Appleby & Oldfield (1978). This assumes a constant rate of supply of unsupported/excess ²¹⁰Pb, a variable sediment-ation and sediment compaction rate, as well a constant flux of unsupported ²¹⁰Pb to the sediment/water interface. The excess ²¹⁰Pb activity in any layer *z* of the sediment column, ²¹⁰Pb_{xs(z)}, is (Baskaran & Naidu, 1995):

$${}^{210}Pb_{xs(z)} = {}^{210}Pb_{xs(0)} e^{-\lambda 210t}$$
⁽⁷⁾

where ${}^{210}Pb_{xs(0)}$ represents the excess 210 Pb activity at the sediment-water interface, λ_{210} is the 210 Pb decay constant (0.0311 year⁻¹), and *t* is the deposition time (age, in years). This equation can be simplified and rewritten as:

$$\ln^{210} Pb_{xs(z)} - \ln^{210} Pb_{xs(0)} = (-\lambda_{210}f^{-1})w$$
(8)

Fig. 2 Excess ²¹⁰Pb *vs* cumulative dry mass relationship for sediment cores collected from the Corumbataí River basin, São Paulo State, Brazil.

Fig. 3 Depth *vs* deposition time relationship for sediment cores collected from the Corumbataí River basin, São Paulo State, Brazil.

where the cumulated dry weight per unit area (g cm⁻²), w, is related to the deposition time according to the expression

$$t = w f^{I} \tag{9}$$

where f is the sediment mass flux in g cm⁻² year⁻¹. When $\ln^{210}Pb_{xs(z)}$ is plotted against the cumulated dry weight per unit area, w, the resulting ²¹⁰Pb profile will be linear, with slope $-\lambda_{210}f^{-1}$. The sediment mass flux, f, may then be determined from the mean slope of the profile, using the least-squares fit procedure (Baskaran & Naidu, 1995).

The $\ln({}^{210}Pb_{xs})$ data in Table 1 are plotted against the cumulated dry weight per unit area in Fig. 2. The following mass accumulation rates are obtained: 546 mg cm^{-2} year⁻¹ (Corumbataí River), 752 mg cm⁻² year⁻¹ (Navarro de Andrade Lake), 1014 mg cm⁻² year⁻¹ (Ibitinga Creek), and 406 mg cm⁻² year⁻¹ (Claro Stream). The deposition time (in years) is calculated by dividing the cumulative dry weight per unit area by the sediment mass accumulation rate, and is plotted against depth in Fig. 3. The expected deposition year for each sediment layer is also shown in Table 1, which was estimated by considering the sampling year and the water-sediment interface at the uppermost layer as a reference for establishing the chronology. The average linear sedimentation rate (in mm year⁻¹) is evaluated by division of the total thickness of the sediment column by the deposition time for the deepest layer, and corresponds to 4.8 mm year⁻¹ (Corumbataí River), 16.2 mm year⁻¹ (Navarro de Andrade Lake), 8.8 mm year⁻¹ (Ibitinga creek), and 3.1 mm year⁻¹ (Claro Stream). They are compatible with values estimated for other sites, for instance, 2.9 and 6.5 mm year⁻¹, respectively, in Galveston Bay and the Mississippi River Delta, USA (Santschi et al., 2001). They also agree with field evidence indicating that the highest value found in Navarro de Andrade Lake is due to the fact that it is a flatter area where the water velocity is negligible, conditions that are highly favourable to the accumulation of sediment.

Beyond modifying the bulk density and porosity of soils and sediments, organic matter also influences their specific surface area, by increasing it. Consequently, other parameters are also significantly affected, for instance, the cation exchange capacity and heavy metal adsorption. The data in Table 2 indicate that a significant direct correlation exists between Pb and organic matter (r = 0.74), but an inverse relationship exists between Cu and organic matter (r = -0.80). Pb and Cu concentrations in the sediments exceeded the maximum allowable values established by USEPA (2002), corresponding to 30 and 18.7 µg g⁻¹, respectively. These preliminary results emphasize the need to undertake more detailed investigations focusing on a broad geochemical survey of the bottom sediments in the study area. Further investigations could usefully address the reasons for the differential distribution of the elements/compounds analysed, which may have implications for the generation of information to support the appropriate management of the hydrological resources in the basin.

REFERENCES

Appleby, P. G. & Oldfield, F. (1978) The calculation of ²¹⁰Pb dates assuming a constant rate of supply of unsupported ²¹⁰Pb to the sediment. *Catena* **5**, 1–8.

Appleby, P. G. & Oldfield, F. (1992) Application of lead-210 to sedimentation studies. In: Uranium Series Disequilibrium: Applications to Environmental Problems (ed. by M. Ivanovich & R. S. Harmon) (second edn), 731–778. Clarendon Press, Oxford, UK.

- Baskaran, M. & Naidu, A. S. (1995) ²¹⁰Pb-derived chronology and the fluxes of ²¹⁰Pb and ¹³⁷Cs isotopes into continental shelf sediments, East Chukchi Sea, Alaskan Artic. *Geochim. Cosmochim. Acta* **59** (21), 4435–4448.
- Bonotto, D. M. & Mancini, L. H. (1992) Estudo hidroquímico e isotópico dos aqüiferos de Rio Claro (SP). Geochim. Brasil 6(2), 153-167.
- Bonotto, D. M. & Caprioglio, L. (2002) Radon in groundwaters from Guarany aquifer, South America: environmental and exploration implications. *Appl. Radiat. Isot.* **57**, 931–940.
- DAEE (Departamento de Águas e Energia Elétrica) (2002) Dados hidrológicos da bacia do Rio Corumbataí. http://www.sigrh.sp.gov.br
- Flynn, W. W. (1968) The determination of low levels of polonium-210 in environmental materials. Anal. Chim. Acta 43, 221-227.
- Godoy, J. M., Moreira, I., Wanderley, C., Mendes, L. B. & Bragança, M. J. (1998) A study of Guanabara Bay sedimentation rates. J. Rad. Nu. Chem. 227(1–2), 157–160.

Hach (1992) Water Analysis Handbook (second edn). Hach Co., Loveland, USA.

- Köffler, N. F. (1993) Diagnósticos do uso agrícola das terras da bacia do Rio Corumbataí-SP. Technical Report, IGCE, UNESP, Rio Claro, Brasil.
- Ravichandran, M., Baskaran, M., Santschi, P. H. & Bianchi, T. S. (1995) Geochronology of sediments in the Sabine-Neches estuary, Texas, USA. *Chem. Geol.* 125, 291–306.
- Santschi, P. H., Presley, B. J., Wade, T. L., Garcia-Romero, B. & Baskaran, M. (2001) Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. *Marine Environ. Res.* 52, 52–79.

USEPA (U.S. Environmental Protection Agency) (2002) National Sediment Quality Survey. http://www.epa.gov/waterscience/cs/vol1/appdx_d.pdf

Wanty, R. B., Lawrence, E. P. & Gundersen, L. C. S. (1992) A theoretical model for the flux of radon from rock to groundwater. In: *Geologic Controls on Radon* (ed. by A. E. Gates & L. C. S. Gundersen), 73–78. Geol. Soc. Am., Boulder, USA.

Wentworth, C. K. (1932) A scale of grade and class terms for clastic sediments. J. Geol. 30, 377-392.